Crystal Structure of the Metastable Form of Aluminum Trifluoride $\boldsymbol{\beta}-\mathrm{AlF}_{3}$ and the Gallium and Indium Homologs

A. LE BAIL, C. JACOBONI, M. LEBLANC, R. DE PAPE, H. DUROY, AND J. L. FOURQUET
Laboratoire des Fluorures, UA CNRS 449, Faculté des Sciences, Route de Laval, 72017 Le Mans Cedex, France

Received March 21, 1988; in revised form June 20, 1988

Abstract

The crystal structure of the metastable phase $\beta-\mathrm{AlF}_{3}$, which is related to the hexagonal tungsten bronze structure, has been solved by X-ray powder and single-crystal diffraction methods. The crystal habit is pseudo-hexagonal with systematic twinning (rotation of 120° around the c axis), but the true symmetry is orthorhombic with space group $\mathrm{Cmcm}, \mathrm{Z}=12, a=6.931(3), b=12.002(6), c=7.134(2) \AA(R=$ 0.044 and $R_{\mathrm{w}}=0.051$ from 929 independent reflections). The network is built from very regular AlF_{6} octahedra rotated by approximately 7.2° from the positions of the ideal HTB structure. A similar network, with the same propagation of the tilting, was observed in the compound $\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.33} \mathrm{FeF}_{3}$ and in the metastable polymorphs of CrF_{3} and of VF_{3}. Our reinvestigation of the structures of $\beta-\mathrm{GaF}_{3}$ and β InF_{3} using powder data shows that they are isotypic with the aluminum compound, with $a=7.210(1)$, $b=12.398(2), c=7.333(1)$ and $a=7.875(2), b=13.499(4), c=7.956(2) \AA$, respectively. © 1988 Academic Press, Inc.

Introduction

The stable form of aluminum fluoride crystallizes with a rhombohedral structure, space group $R \overline{3}(1,2)$ and transforms reversibly to a cubic ReO_{3}-type polymorph at 725 K (3). We will refer to this rhombohedral form as the " α " form by analogy with the stable forms of gallium and indium trifluoride, whose structures are very similar to that of $\alpha-\mathrm{AlF}_{3}$ (2). A metastable form, called $\beta-\mathrm{AlF}_{3}$ (4), observed by several authors was obtained by dehydrating $\alpha-\mathrm{AlF}_{3}$ - $3 \mathrm{H}_{2} \mathrm{O}(4,5)$ or from the thermal decomposition of $\mathrm{NH}_{4} \mathrm{AlF}_{4}$ (7).

Several discrepancies in the literature led us to reexamine these compounds. Although the published powder diffraction patterns are very similar, the reported hex-
agonal $(4,6)$ and tetragonal $(7,8)$ indexings are incompatible. In addition the exact composition has not been fully characterized. One group of authors (5) assumes that the preparation of $\alpha-\mathrm{AlF}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ by dehydration leads to an oxyfluoride $\mathrm{Al}(\mathrm{OH}, \mathrm{F})_{3}$ due to hydrolysis.

In this paper we have tried to resolve these ambiguities for the aluminum phase, and to characterize the related β-phases of gallium and indium previously prepared by thermal decomposition of the ammonium salts $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{MF}_{6}$ (6).

Preparations

$\beta-\mathrm{AlF}_{3}$ was prepared by two different methods, by dehydration of $\alpha-\mathrm{AlF}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, which results in polycrystalline samples
and by crystal growth from a chloride flux (9).

The trihydrate was heated $(5 \% \mathrm{~min})$ to $220^{\circ} \mathrm{C}$ under vacuum (10^{-5} Torr) to give an amorphous material. The fluorine content was carefully checked by titration of the HF evolved after pyrohydrolysis and the aluminum content was determined by complexometric titration. The F/Al ratio was found to be 2.98 ± 0.03. This amorphous material remains slightly hydrated and can be formulated as $\mathrm{AlF}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}(x<0.5)$. Further heating to $450^{\circ} \mathrm{C}$ under high vacuum or an inert atmosphere is necessary to obtain pure crystalline $\beta-\mathrm{AlF}_{3}$. Chemical analysis yielded a F / Al ratio of 2.99 ± 0.03. When heated at $500^{\circ} \mathrm{C}$ for 12 hr in a sealed platinum tube under an inert atmosphere, β AlF_{3} irreversibly transforms to the stable α-form. AlF_{3} undergoes no perceptible hydrolysis under these mild conditions of dehydration. The pyrohydrolysis experiments used to check the amount of fluorine in AlF_{3} require more severe conditions: at least $620^{\circ} \mathrm{C}$ and a partial pressure of water equal to 1 atm .

Crystals of $\beta-\mathrm{AlF}_{3}$ were grown from a chloride flux according to the scheme:

$$
\begin{aligned}
& 7 \mathrm{RbCl}+\frac{3}{2} \mathrm{CoCl}_{2}+\mathrm{CoF}_{2} \\
& \quad+4 \alpha-\mathrm{AlF}_{3} \rightarrow \beta-\mathrm{AlF}_{3} .
\end{aligned}
$$

The crystals are colorless needles with hexagonal sections, some of them up to 5 mm long and 1 mm thick. Chemical analysis confirmed the composition ($\% \mathrm{Al}_{\text {calc }}=32.1$, $\% \mathrm{Al}_{\mathrm{obs}}=32.7$).

The phases $\beta-\mathrm{GaF}_{3}$ and β - InF_{3} were prepared by the method of Beck et al. (8). Pure $\beta-\mathrm{GaF}_{3}$ was obtained by heating 1.5 g of $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{GaF}_{6}\left(5^{\circ} / \mathrm{min}\right)$ to $420^{\circ} \mathrm{C}$ under an argon flow. The sample was then quenched. For β - InF_{3} a first step $\left(10^{\circ} \mathrm{C} / \mathrm{min}\right.$ to $275^{\circ} \mathrm{C}$) gave $\mathrm{NH}_{4} \mathrm{In}_{3} \mathrm{~F}_{10}$ (10) which was then heated under vacuum at $275^{\circ} \mathrm{C}$ for 2 days. Chemical analysis confirmed the compositions $M F_{3}$:

	$\% M_{\text {calc }}$	$\% M_{\text {obs }}$	$\% \mathrm{~F}_{\text {calc }}$	$\% \mathrm{~F}_{\text {obs }}$
Ga	55.02	$53.3(7)$	44.98	$44.8(3)$
In	66.29	$65.2(7)$	33.71	$31.7(3)$

The three β-phases are metastable and transform on heating to the corresponding α-phases. The conversion temperatures, not discernable by differential thermoanalysis, were roughly determined by trial and error to be $500^{\circ} \mathrm{C}$ for $\beta-\mathrm{AlF}_{3}, 550^{\circ} \mathrm{C}$ for β GaF_{3}, and $400^{\circ} \mathrm{C}$ for $\beta-\mathrm{InF}_{3}$. The transformation results in a large decrease in volume of $11.9,14.3$, and 13.8%, respectively.

Structural Determination of $\boldsymbol{\beta}-\mathrm{AlF}_{3}$

A small needle was selected for the crystallographic determination. A preliminary study by standard photographic methods suggested LAUE symmetry $6 / \mathrm{mmm}$ and the only observed reflection condition was $00 l$ with $l=2 n$, leading to three possible space groups: $P 6_{3} 22, P 6_{3} / m$, or $P 6_{3}$.

However, a study of the crystal on an Enraf-Nonius CAD4 automated four-circle diffractometer revealed that the hexagonal equivalence conditions were not fulfilled, particularly for the reflections $h k l$ with l odd. The only condition of equivalence observed was $h k l=\bar{h} k l$. The refinement of the structure starting from the hexagonal tungsten bronze (HTB) model (11) did not converge ($R=0.12$ for 1103 reflections); however, the residual drops to 0.049 for the 596 reflections with $l=2 n$ which represent 90% of the total intensity. This indicates that the HTB model provides an approximate description of the structure.

At this stage, we considered the possibility that $\beta-\mathrm{AlF}_{3}$ could be isostructural with orthorhombic $\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.33} \mathrm{FeF}_{3}$ (12), space group Cmcm , whose crystals adopt a pseudo-hexagonal habit with frequent (110) twinning. Recently, the same structure was encountered for the metastable forms of CrF_{3} and VF_{3} (13).

Fig. 1. Arrangement of the three twinned orthorhombic domains.

In order to overcome possible problems due to twinning in the single-crystal study, we recorded an X-ray powder diffractogram which was analyzed by means of a modified Rietveld program (14, 15). All previously mentioned space groups were tested; only the refinement in space group Cmcm was able to reproduce satisfactorily the intensities of the reflections with l odd. The residual values for the refinement are $R_{I}=0.056, R_{\text {prof }}=0.090$ assuming isotropic thermal motion. These results confirm the hypothesis of twinning; as shown in Fig. 1 the lowering of symmetry is compatible with the existence of three orthorhombic domains rotated by 120° around the common c axis.

This model leads to a strict superposition of all reflections and the total intensities depend upon the volumes of the three domains. Consideration of the diffraction planes $H_{1}=(h, k, l), H_{2}=(-h / 2+k / 2$, $-3 h / 2-k / 2, l), H_{3}=(-h / 2-k / 2,3 h / 2-$ $k / 2, l$), which are related to each other by the pseudo-threefold axis and the corresponding intensities for each domain, shows that the nine intensities reduce to three independent values I_{1}, I_{2}, I_{3} and that the intensities of the polycrystal $\left(I^{\prime}\right)$ are related to the volumes (v) of the domains by:

$$
\left|\begin{array}{c}
I_{1}^{\prime} \tag{1}\\
I_{2}^{\prime} \\
I_{3}^{\prime}
\end{array}\right|=\left|\begin{array}{lll}
I_{1} & I_{2} & I_{3} \\
I_{3} & I_{1} & I_{2} \\
I_{2} & I_{3} & I_{1}
\end{array}\right| *\left|\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right| .
$$

In order to test this twinning hypothesis in the space group Cmcm , a new set of data was collected from another crystal on a Siemens AED2 four-circle diffractometer. Table I shows the experimental details. An absorption correction was applied. As all of the intensities are superposed, the determination of the relative volumes of the three domains using Eq. (1) could not be performed without the fact that the reflections $h 0 l$ with l odd corresponding to the orthorhombic axis of a given domain, say the domain 1, are forbidden in the space group Cmcm ($I_{1}=0$). Only the two other domains contribute to these reflections with their planes $(h / 2,3 h / 2, l)$ and $(-h / 2,3 h / 2$, $l)$; for instance, the (203) polycrystal reflection is the sum of the (133) and (-133) reflections from domains 2 and 3 . Moreover the intensities of these reflections are equal $\left(I_{2}=I_{3}\right)$. Thanks to these additional relations, the resolution of Eq. (1) was possi-

TABLE I
Details of the Data Collection on $\beta-\mathrm{AlF}_{3}$
Molecular weight: 83.95 g
Space group: Cmcm
$a=6.931(3) \AA \quad V=593.44 \AA^{3}$
$b=12.002(6) \AA \quad \rho_{\text {obs }}=2.843(5) \mathrm{g} \cdot \mathrm{cm}^{-3}$ (flotation method)
$c=7.134(3) \AA \quad \rho_{\text {calc }}=2.82 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$
$Z=12$
Radiation: Mo $K \alpha$ (graphite monochromatized); $\mu(\mathrm{MoK} \alpha)=7.60 \mathrm{~cm}^{-1}$
$T=20^{\circ} \mathrm{C}$
Scanning: $\omega / 2 \theta$ Angular range: $5.71 \leq 2 \theta \leq 79.98$
Region of reciprocal space: Four independent sets
Crystal shape: Needle with hexagonal section ($14 \times$ $7 \times 5 \times 10^{-6} \mathrm{~mm}^{3}$)
Absorption correction: By the Gauss method
Minimum and maximum transmission factors:
$0.9259,0.9573$
Number of measured reflections: 4150
Number of independent reflections after merging in mmm: 981
Number of independent reflections with $\sigma(I) / I<$ 0.33 used in the refinement: 929

TABLE II
Final Atomic Coordinates and Anisotropic Temperature Factors ($\times 10^{4}$) for β-AlF ${ }_{3}$

Atom	Site	x	y	z	$U_{11^{a}}$	U_{22}	U_{33}	U_{23}	U_{13}	$U_{\mathrm{t} 2}$	$B_{\text {eq }}\left(\AA^{2}\right)$
Al1	4 b	0	$1 / 2$	0	$55(3)$	$42(3)$	$43(3)$	$-2(2)$	0	0	0.368
A12	8 d	$1 / 4$	$1 / 4$	0	$40(2)$	$57(3)$	$44(2)$	$-3(2)$	$-5(1)$	$8(2)$	0.371
F1	8 f	0	$2125(1)$	$5257(2)$	$40(4)$	$107(5)$	$112(5)$	$10(4)$	0	0	0.681
F2	16 h	$3161(1)$	$1054(1)$	$9800(1)$	$83(3)$	$61(3)$	$141(4)$	$-4(2)$	$-12(3)$	$23(2)$	0.750
F3	4 c	0	$5177(2)$	$1 / 4$	$155(8)$	$128(8)$	$49(6)$	0	0	0	0.870
F4	8 g	$2297(2)$	$2352(1)$	$1 / 4$	$133(5)$	$141(6)$	$40(4)$	0	0	$-2(4)$	0.826

[^0]ble. From the intensities of the 14 strongest associated triplets ($h 0 l$) with l odd, the proportions of the three domains were found to be $v_{1}=0.567 \pm 0.004, v_{2}=0.180$ $\pm 0.060, v_{3}=0.253 \pm 0.060$, with excellent precision. All of the intensities were then transformed to "single-crystal" intensities using the linear equations:
\[

\left|$$
\begin{array}{l}
I_{1}^{\prime} \\
I_{2}^{\prime} \\
I_{3}^{\prime}
\end{array}
$$\right|=\left|$$
\begin{array}{lll}
v_{1} & v_{2} & v_{3} \\
v_{2} & v_{3} & v_{1} \\
v_{3} & v_{1} & v_{2}
\end{array}
$$\right| *\left|$$
\begin{array}{l}
I_{1} \\
I_{2} \\
I_{3}
\end{array}
$$\right| .
\]

The corrected data were merged in the Laue group $m m m$ ($R_{\text {int }}=0.044$). The same procedure, when applied to the first crystal data, gave the proportions: $v_{1}=0.30, v_{2}=$ $0.34, v_{3}=0.35$, but unfortunately these very similar values are unsuitable for an accurate correction of the raw data, because the v-matrix is nearly singular.

All calculations were performed with the SHELX 76 (16) program. Atomic scattering factors and the values of Δf^{\prime} and $\Delta f^{\prime \prime}$ were taken from "The International Tables for X-Ray Crystallography" (17) for Al^{3+} and F^{-}. The refinement was started with the model from the powder work and rapidly converged to $R=0.044$ and $R_{\mathrm{w}}=$ $0.051,{ }^{1}$ with anisotropic thermal parameters

[^1]for all the atoms varied. Weights were calculated as $w=14.0356\left\{\sigma(F)+1.95 \times 10^{-4}\right.$ $\left.F^{2}\right\}$ and the secondary extinction coefficient took the value $468(60) \times 10^{-5}$. It is notable that better R and R_{w} values (0.033 and 0.035 , respectively) can be obtained without significant changes in the refined parameters by limiting the data set at $2 \theta_{\text {max }}=$ 66° (606 independent reflections instead of 929), which is a feature of many reported structure determinations.

Figure 2 shows a perspective view of the structure. Table II presents the final results, and distances and angles are listed in Table III. The AlF ${ }_{6}$ octahedra are very regular and the mean distance $\mathrm{Al}-\mathrm{F}$ is very close to the sum of the Al^{3+} and F^{-}ionic radii.

Fig. 2. Perspective view of the structure of $\beta-\mathrm{AlF}_{3}$. $\mathrm{Al}_{1} \mathrm{~F}_{6}$ octahedra are hatched and the F atoms are numbered.

TABLE III
Interatomic Distances (\AA) and Bond Angles $\left({ }^{\circ}\right)$ for β - AlF_{3} (Crystal)

$4 \times \mathrm{Al}_{1}-\mathrm{F}_{2}$	$1.801(1)$	$1.874(10)$	$d\left(\mathrm{Al}_{1}-\mathrm{F}\right)=1.799$	1.880
$2 \times \mathrm{Al}_{1}-\mathrm{F}_{3}$	$1.796(1)$	$1.878(3)$	$d(\mathrm{~F}-\mathrm{F})=2.545$	2.652
$2 \times \mathrm{Al}_{2}-\mathrm{F}_{1}$	$1.800(1)$	$1.891(3)$	$d\left(\mathrm{Al}_{2}-\mathrm{F}_{1}\right)=1.799$	1.881
$2 \times \mathrm{Al}_{2}-\mathrm{F}_{2}$	$1.800(1)$	$1.870(12)$	$d(\mathrm{~F}-\mathrm{F})=2.544$	2.660
$2 \times \mathrm{Al}_{2}-\mathrm{F}_{4}$	$1.798(1)$	$1.882(5)$		
$\mathrm{Al}_{1}-\mathrm{F}_{3}-\mathrm{Al}_{1}$	166.4	154.8	$\mathrm{~F}_{2}-\mathrm{Al}_{1}-\mathrm{F}_{2}$	89.9
$\mathrm{Al}_{2}-\mathrm{F}_{4}-\mathrm{Al}_{2}$	165.5	153.9	$\mathrm{~F}_{2}-\mathrm{Al}_{1} \mathrm{~F}_{3}$	89.7
89.7				
$\mathrm{Al}_{2}-\mathrm{F}_{1}-\mathrm{Al}_{2}$	148.7	144.8	$\mathrm{~F}_{1}-\mathrm{Al}_{2}-\mathrm{F}_{2}$	89.8
$\mathrm{Al}_{1}-\mathrm{F}_{2}-\mathrm{Al}_{2}$	148.3	146.5	$\mathrm{~F}_{1}-\mathrm{Al}_{2}-\mathrm{F}_{4}$	89.9
			$\mathrm{~F}_{2}-\mathrm{Al}_{2}-\mathrm{F}_{4}$	89.8
			89.6	

Note. The values for GaF_{3} (powder) are given in italics.

Discussion

The accurate determination of the volumes of the twin domains, the regularity of the AlF_{6} octahedra, and the consistency of the anisotropic thermal motion with the tilting scheme of the octahedra are very strong arguments for the true symmetry of $\beta-\mathrm{AlF}_{3}$ being orthorhombic, despite the apparent hexagonal symmetry which leads to a b/a ratio of 1.732 .
Other evidence comes from the isotypy with $\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.33} \mathrm{FeF}_{3}$ and the powder diffrac-

TABIEIV
Final Atomic Coordinates for $\beta-\mathrm{GaF}_{3}$

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)$
Gal	0	$\frac{1}{2}$	0	0.98(3)
Ga2	$\frac{1}{4}$	$\frac{1}{4}$	0	-
F1	0	0.210(1)	0.539(2)	$1.72(6)$
F2	0.320(1)	$\mathrm{x} / 3^{\text {a }}$	0.961(1)	-
F3	0	0.533(1)	$\frac{1}{4}$	-
F4	0.216(2)	0.222(1)	$\frac{1}{4}$	-
$\mathrm{H}_{2} \mathrm{O}^{\text {b }}$	0	$0.06(1)$	$\frac{1}{4}$	-
$\begin{aligned} & a= \\ & R_{1}= \\ & R_{\mathrm{P}}= \\ & R_{\mathrm{wp}} \end{aligned}$	$\begin{aligned} & .210(1) \AA \\ & 0.037 \\ & 0.087 \\ & 0.098 \end{aligned}$	$=12.3981$	$\AA ; c=7$	$3(1) \AA$

[^2]tion results for $\beta-\mathrm{AlF}_{3}$ and $\beta-\mathrm{GaF}_{3}$. For the latter phase a successful refinement of the structure by means of the same profile method (14, 15) and starting from the same model leads to a rather different b / a ratio of 1.720 , thus demonstrating directly the lowering of symmetry. Table IV shows the final atomic parameters for β - GaF_{3} and Table III lists distances and angles; as for $\beta-\mathrm{AlF}_{3}$ the framework is built from very regular octahedra.
The aluminum and gallium β-phases, and probably the indium one, undergo the same mode of tilting: the mean rotation angles with respect to an ideal HTB structure are 7.2° and 12.9° for the Al and Ga compounds, respectively. The indium phase is highly hygroscopic and readily transforms in $\mathrm{InF}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$. We have indexed the powder diffraction pattern by analogy with the other β phases. The unit cell parameters (a $=7.875(2), b=13.499(4), c=7.956(2) \AA)$ were obtained by a least-squares method and give a b/a ratio of $1.714 .{ }^{2}$
It is notable that very few structures of HTB-type fluorides have been fully solved from single-crystal data. Examples are $\left(\mathrm{H}_{2} \mathrm{O}\right)_{0.33} \mathrm{FeF}_{3}$ and $\mathrm{Cs}_{0.4} \mathrm{Zn}_{0.4} \mathrm{Fe}_{1.6} \mathrm{~F}_{6}$ (space group $P 2_{1}$) (18). Recent investigations by electron microscopy on $\mathrm{A}_{x} \mathrm{VF}_{3}$ bronzes (19) also suggest that the presumed hexagonal symmetry is probably a pseudo-one.

Acknowledgment

We are indebted to Dr. P. Attfield for his critical reading of the manuscript.

References

1. J.A. A. Ketelaar, Z. Kristallogr. 85, 119 (1933).
2. R. Hoppe and D. Kissel, J. Fluorine Chem. 24 ,
327 (1984).

[^3]3. T. B. Douglas and A. Ditmars, J. Res. Natl. Bur. Std. A 71, 185 (1967).
4. F. J. Christoph, Jr., M. D. Elkton, G. Teufer, and Ch. Ford, U.S. Pat. 3,178,483, April 13 (1965).
5. A. Baumer, R. Caruba, and G. Turco, C.R. Acad. Sci. Ser. D 271, 1 (1970).
6. A. Baumer, R. Caruba, and G. Turco, C.R. Acad. Sci. Ser. D 272, 3105 (1971).
7. D. B. Shinn, D. S. Crockett, and H. M. Haendler, Inorg. Chem. 5, 11, 1927 (1966).
8. L. K. Beck, B. Haendler-Kruger, and H. M. Haendler, J. Solid State Chem. 8, 312 (1973).
9. J. Nouet, C. Jacoboni, G. Ferey, J. Y. Gerard, and R. De Pape, J. Cryst. Growth 8, 94 (1970).
10. J. C. Champarnaud-Mesiard, B. Frit, and B. Gaudreau, Rev. Chim. Miner. 15, 328 (1978).
11. A. Magneli, Acta Chem. Scand. 7, 315 (1953).
12. M. Leblanc, G. Ferey, P. Chevallier, Y. Calage, and R. De Pape, J. Solid State Chem. 47, 53 (1983).
13. R. De Pape, A. Le Bail, F. Lubin, and G. Ferey, Rev. Chim. Miner. 24, 1 (1987).
14. C. Lartigue, A. Le Bail, and A. PercheronGuegan, J. Less-Common Met. 129, 65 (1987).
15. A. Gibaud, A. Le Bail, and A. Bulou, J. Phys. C 19, 4623 (1986).
16. G. M. Sheldrick, "SHELX, A Program for Crystal Structure Determination," University of Cambridge (1976).
17. "International Tables for X-Ray Crystallography," Vol. IV, Kynoch Press, Birmingham (1968).
18. A. Hartung, W. Verscharen, F. Binder, and D. Babel, Z. Anorg. Allg. Chem. 456, 106 (1979).
19. D. Rieck, R. Langley, and L. Eyring, J. Solid State Chem. 45, 259 (1982).

[^0]: ${ }^{a}$ The vibrational coefficients relate to the expression $T=\exp \left\{-2 \pi^{2}\left(h^{2} a^{* 2} u_{11}+k^{2} b^{* 2} u_{22}+i^{2} c^{* 2} u_{33}+\right.\right.$ $\left.\left.2 k l b^{*} c^{*} u_{23}+2 h l a^{*} c^{*} u_{13}+2 h k a^{*} b^{*} u_{12}\right)\right\}$.

[^1]: ${ }^{1} F_{\mathrm{o}}$ and F_{c} values may be obtained by request to J . L. Fourquet.

[^2]: ${ }^{a}$ Constrained parameter.
 ${ }^{b}$ In $4 c$ sites, with an occupancy factor of $0.22(2)$ due to zeolitic hydration during the data collection.

[^3]: ${ }^{2}$ Our results on the unit cell of $\beta-M \mathrm{~F}_{3}$ ($M=\mathrm{Al}, \mathrm{Ga}$, In) disagree with those of Shinn et al. (7) and Beck et al. (8) who claimed a tetragonal symmetry.

